On Solvability of Some Inverse Problems for a Fractional Parabolic Equation with a Nonlocal Biharmonic Operator
نویسندگان
چکیده
The paper considers the solvability of some inverse problems for fractional differential equations with a nonlocal biharmonic operator, which is introduced help involutive transformations in two space variables. considered are solved using Fourier method. properties eigenfunctions and associated functions corresponding spectral studied. Theorems on existence uniqueness solutions to studied proved.
منابع مشابه
global results on some nonlinear partial differential equations for direct and inverse problems
در این رساله به بررسی رفتار جواب های رده ای از معادلات دیفرانسیل با مشتقات جزیی در دامنه های کراندار می پردازیم . این معادلات به فرم نیم-خطی و غیر خطی برای مسایل مستقیم و معکوس مورد مطالعه قرار می گیرند . به ویژه، تاثیر شرایط مختلف فیزیکی را در مساله، نظیر وجود موانع و منابع، پراکندگی و چسبندگی در معادلات موج و گرما بررسی می کنیم و به دنبال شرایطی می گردیم که متضمن وجود سراسری یا عدم وجود سراسر...
On solvability of some boundary value problems for a fractional analogue of the Helmholtz equation
In this paper we study some boundary value problems for fractional analogue of Helmholtz equation in a rectangular and in a half-band. Theorems about existence and uniqueness of a solution of the considered problems are proved by spectral method.
متن کاملsolving an inverse problem for a parabolic equation with a nonlocal boundary condition in the reproducing kernel space
on the basis of a reproducing kernel space, an iterative algorithm for solving the inverse problem for heat equation with a nonlocal boundary condition is presented. the analytical solution in the reproducing kernel space is shown in a series form and the approximate solution vn is constructed by truncating the series to n terms. the convergence of vn to the analytical solution is also proved. ...
متن کاملSolvability of Fractional Analogues of the Neumann Problem for a Nonhomogeneous Biharmonic Equation
In this article we study the solvability of some boundary value problems for inhomogenous biharmobic equations. As a boundary operator we consider the differentiation operator of fractional order in the Miller-Ross sense. This problem is a generalization of the well known Neumann problems.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Fractal and fractional
سال: 2023
ISSN: ['2504-3110']
DOI: https://doi.org/10.3390/fractalfract7050404